[LỜI GIẢI] Trong không gian Oxyz mặt phẳng đi qua tâm của mặt cầu - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz mặt phẳng đi qua tâm của mặt cầu

Trong không gian Oxyz mặt phẳng đi qua tâm của mặt cầu

Câu hỏi

Nhận biết

Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\)và songsong với mặt phẳng \(\left( {Oxz} \right)\)có phương trình là


Đáp án đúng: A

Lời giải của Tự Học 365

Phương pháp giải:

- Mặt cầu \(\left( S \right):\,\,{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) và bán kính R.


- Hai mặt phẳng song song có cùng VTPT.


- Phương trình mặt phẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là:


\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

Giải chi tiết:

Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) có tâm \(I\left( {1; - 2;0} \right)\).

Mặt phẳng cần tìm song song với mặt phẳng (Oxz) nên có 1 VTPT là \(\overrightarrow j  = \left( {0;1;0} \right)\).

Vậy phương trình mặt phẳng cần tìm là: \(1\left( {y + 2} \right) = 0 \Leftrightarrow y + 2 = 0.\)

Chọn A.

Ý kiến của bạn