[LỜI GIẢI] Trong không gian Oxyz mặt cầu S x^2 + y^2 + z^2 - 4x + - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz mặt cầu S x^2 + y^2 + z^2 - 4x +

Trong không gian Oxyz mặt cầu  S x^2 + y^2 + z^2 - 4x +

Câu hỏi

Nhận biết

Trong không gian Oxyz, mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 4x + 6z - 2 = 0\) có bán kính bằng


Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

Mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \) với \({a^2} + {b^2} + {c^2} - d > 0\).

Giải chi tiết:

Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 6z - 2 = 0\) có tâm là \(I\left( {2;0; - 3} \right)\), bán kính \(R = \sqrt {{2^2} + {0^2} + {{\left( { - 3} \right)}^2} + 2}  = \sqrt {15} .\)

Chọn D.

Ý kiến của bạn