[LỜI GIẢI] Trong không gian Oxyz cho hai điểm A 012 B - 34 - 1 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz cho hai điểm A 012 B - 34 - 1

Trong không gian Oxyz cho hai điểm A 012  B  - 34 - 1

Câu hỏi

Nhận biết

Trong không gian Oxyz, cho hai điểm \(A\left( {0;1;2} \right),\) \(B\left( { - 3;4; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - 2y - z - 2 = 0\). Xét điểm M thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + M{B^2}\) bằng


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

- Tìm tọa độ điểm I sao cho \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \).


- Tìm M là hình chiếu của I trên \(\left( P \right)\).

Giải chi tiết:

Ta có \(A\left( {0;1;2} \right),B\left( { - 3;4; - 1} \right)\) và \(2\overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \)

Nên \(I\left( { - 1;2;1} \right)\).

Khi đó ta có

\(2M{A^2} + M{B^2} = 2{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2} = 3M{I^2} + 2I{A^2} + I{B^2} + 2\overrightarrow {MI} \left( {2\overrightarrow {IA}  + \overrightarrow {IB} } \right) = 3M{I^2} + 2I{A^2} + I{B^2}\)

Có giá trị nhỏ nhất khi \(MI\) nhỏ nhất hay M là hình chiếu của I  trên \(\left( P \right)\).

Ta có \(M\left( { - 1 + 2t;2 - 2t;1 - t} \right) \in \left( P \right):2x - 2y - z - 2 = 0\) nên \(t = 1 \Rightarrow M\left( {1;0;0} \right)\)

Khi đó \(T = 2M{A^2} + M{B^2} = 45\)

Chọn B.

Ý kiến của bạn