[LỜI GIẢI] Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống d - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống d

Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống d

Câu hỏi

Nhận biết

Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10km/h, vận tốc lúc xuống dốc là 15km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính quãng đường AB.


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Gọi quãng đường lên dốc lúc đi là \(x\) (km), quãng đường xuống dốc lúc đi là \(y\) (km) (ĐK: \(x,y > 0\))

\( \Rightarrow \) Quãng đường lên dốc lúc về là \(y\) (km), quãng đường xuống dốc lúc về là \(x\) (km).

Thời gian lúc đi là 16 phút \( = \dfrac{{16}}{{60}} = \dfrac{4}{{15}}\)(h) nên ta có phương trình:

\(\dfrac{x}{{10}} + \dfrac{y}{{15}} = \dfrac{4}{{15}} \Leftrightarrow 3x + 2y = 8\,\,\left( 1 \right)\).

Thời gian lúc về là 14 phút \( = \dfrac{{14}}{{60}} = \dfrac{7}{{30}}\)(h) nên ta có phương trình:

\(\dfrac{y}{{10}} + \dfrac{x}{{15}} = \dfrac{7}{{30}} \Leftrightarrow 3x + 2x = 7\,\,\left( 2 \right)\).

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}3x + 2y = 8\\3y + 2x = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9x + 6y = 24\\4x + 6y = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 10\\3x + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\3.2 + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\,\,\left( {tm} \right)\)

\( \Rightarrow \) Quãng đường lên dốc lúc đi là \(2\,\,km\), quãng đường xuống dốc lúc đi là \(1km\).

Vậy độ dài quãng đường AB là \(2 + 1 = 3\,\,\left( {km} \right)\).

Chọn C.

Ý kiến của bạn