[LỜI GIẢI] Phương trình đường tiệm cận ngang của đồ thị hàm số y = - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Phương trình đường tiệm cận ngang của đồ thị hàm số y =

Phương trình đường tiệm cận ngang của đồ thị hàm số y =

Câu hỏi

Nhận biết

Phương trình đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{3 - 5x}}{{4x + 7}}\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Phương pháp giải:

Đường thẳng \(y = b\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = b.\) 

Giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to \infty } \dfrac{{3 - 5x}}{{4x + 7}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{3}{x} - 5}}{{4 + \dfrac{7}{x}}} =  - \dfrac{5}{4}\) \( \Rightarrow y =  - \dfrac{5}{4}\) là TCN của đồ thị hàm số đã cho.

Chọn A. 

Ý kiến của bạn