[LỜI GIẢI] Phương trình cos x = d13 có bao nhiêu nghiệm trong khoả - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Phương trình cos x = d13 có bao nhiêu nghiệm trong khoả

Phương trình cos x = d13 có bao nhiêu nghiệm trong khoả

Câu hỏi

Nhận biết

Phương trình \(\cos x = \dfrac{1}{3}\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2\pi } \right)\)?


Đáp án đúng: C

Lời giải của Tự Học 365

Phương pháp giải:

- Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha  \Leftrightarrow x =  \pm \alpha  + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).


- Tìm nghiệm thỏa mãn điều kiện.

Giải chi tiết:

\(\cos x = \dfrac{1}{3} \Leftrightarrow x =  \pm \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Xét họ nghiệm \(x = \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) ta có:

\(x \in \left( {0;2\pi } \right) \Rightarrow 0 < \arccos \dfrac{1}{3} + k2\pi  < 2\pi  \Leftrightarrow  - 0,19 < k < 0,80\).

Mà \(k \in \mathbb{Z} \Rightarrow k = 0 \Rightarrow x = \arccos \dfrac{1}{3}\).

Xét họ nghiệm \(x =  - \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) ta có:

\(x \in \left( {0;2\pi } \right) \Rightarrow 0 <  - \arccos \dfrac{1}{3} + k2\pi  < 2\pi  \Leftrightarrow 0,19 < k < 1,19\).

Mà \(k \in \mathbb{Z} \Rightarrow k = 1 \Rightarrow x =  - \arccos \dfrac{1}{3} + 2\pi \).

Vậy phương trình ban đầu có 2 nghiệm thỏa mãn điều kiện.

Chọn C.

Ý kiến của bạn