[LỜI GIẢI] Một người mua hai thùng hàng A và B Nếu thùng hàng A tă - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Một người mua hai thùng hàng A và B Nếu thùng hàng A tă

Một người mua hai thùng hàng A và B Nếu thùng hàng A tă

Câu hỏi

Nhận biết

Một người mua hai thùng hàng \(A\) và \(B\). Nếu thùng hàng \(A\) tăng giá \(20\% \) và thùng hàng \(B\) tăng \(30\% \) thì người đó phải trả \(302\) nghìn đồng. Nếu thùng hàng \(A\) giảm giá \(10\% \) và thùng hàng \(B\) giảm giá \(20\% \)  thì người đó phải trả \(202\) nghìn đồng. Giá tiền thùng hàng \(A\) và thùng hàng \(B\) lúc đầu lần lượt là


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

Gọi giá tiền thùng hàng A là \(x\) (nghìn đồng) (ĐK: \(x > 0\))


       giá tiền thùng hàng B là .. (nghìn đồng) (ĐK: \(y > 0\)).


- Tính giá tiền thùng hàng A sau khi tăng giá 20% và tiền thùng hàng B sau khi tăng giá 30%, dựa vào dữ kiện thùng A tăng giá 20% và thùng B tăng giá 30% thì người đó phải trả 302 nghìn đồng lập phương trình.


- Tương tự dựa vào dữ kiện thùng A giảm giá 10% và thùng B giảm giá 20% thì người đó phải trả 202 nghìn đồng để lập phương trình thứ hai.


- Suy ra hệ phương trình. Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số. Đối chiếu điều kiện và kết luận.

Giải chi tiết:

Gọi giá tiền thùng hàng A là \(x\) (nghìn đồng) (ĐK: \(x > 0\))

       giá tiền thùng hàng B là \(y\) (nghìn đồng) (ĐK: \(y > 0\)).

Giá tiền thùng hàng A sau khi tăng giá 20% là \(x + 20\% x = 1,2x\) (nghìn đồng).

Giá tiền thùng hàng B sau khi tăng giá 30% là \(y + 30\% y = 1,3y\) (nghìn đồng).

Vì thùng A tăng giá 20% và thùng B tăng giá 30% thì người đó phải trả 302 nghìn đồng nên ta có phương trình: \(1,2x + 1,3y = 302\).

Tương tự: khi thùng A giảm giá 10% và thùng B giảm giá 20% thì người đó phải trả 202 nghìn đồng nên ta có phương trình \(0,9x + 0,8y = 202\).

Khi đó ta có hệ phương trình:

\(\left\{ \begin{array}{l}1,2x + 1,3y = 302\\0,9x + 0,8y = 202\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12x + 13y = 3020\\9x + 8y = 2020\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}36x + 39y = 9060\\36x + 32y = 8080\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}7y = 980\\9x + 8y = 2020\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = 140\,\,\,\left( {tm} \right)\\9x + 8.140 = 2020\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = 140\\x = 100\end{array} \right.\,\,\,\left( {tm} \right)\).

Vậy giá tiền thùng hàng \(A\) là \(100\) nghìn đồng, giá tiền thùng hàng \(B\) là \(140\) nghìn đồng.

Chọn B.

Ý kiến của bạn