Giải phương trình \(\sin 4x - \cos 4x = 1 + 4\sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right)\).
Phương pháp giải:
- Sử dụng các công thức nhân đôi, đưa phương trình về dạng tích có chứa nhân tử \(\cos x - \sin x\).
- Giải phương trình tích, đưa một phương trình thành phần về dạng \(\sin A - \cos B = - 2 \Leftrightarrow \left\{ \begin{array}{l}\sin A = - 1\\\cos B = 1\end{array} \right.\).
- Giải các phương trình lượng giác cơ bản sau đó kết hợp nghiệm trên đường tròn lượng giác.
Giải chi tiết:
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\sin 4x - \cos 4x = 1 + 4\sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right)\\ \Leftrightarrow \sin 4x - \left( {1 + \cos 4x} \right) = 4\left( {\sin x - \cos x} \right)\\ \Leftrightarrow 2\sin 2x\cos 2x - 2{\cos ^2}2x = 4\left( {\sin x - \cos x} \right)\\ \Leftrightarrow 2\cos 2x\left( {\sin 2x - \cos 2x} \right) = 4\left( {\sin x - \cos x} \right)\\ \Leftrightarrow 2\left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {\sin 2x - \cos 2x} \right) = 4\left( {\sin x - \cos x} \right)\\ \Leftrightarrow 2\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)\left( {\sin 2x - \cos 2x} \right) = 4\left( {\sin x - \cos x} \right)\\ \Leftrightarrow 2\left( {\cos x - \sin x} \right)\left[ {\left( {\cos x + \sin x} \right)\left( {\sin 2x - \cos 2x} \right) + 2} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = \cos x\\\left( {\cos x + \sin x} \right)\left( {\sin 2x - \cos 2x} \right) + 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right).\sqrt 2 \sin \left( {2x - \dfrac{\pi }{4}} \right) + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\\sin \left( {x + \dfrac{\pi }{4}} \right).\sin \left( {2x - \dfrac{\pi }{4}} \right) = - 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\\dfrac{1}{2}\left[ {\cos \left( {x - \dfrac{\pi }{2}} \right) - \cos 3x} \right] = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\\sin x - \cos 3x = - 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\\left\{ \begin{array}{l}\sin x = - 1\\\cos 3x = 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\\left\{ \begin{array}{l}x = - \dfrac{\pi }{2} + k2\pi \\x = \dfrac{{k2\pi }}{3}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x \in \emptyset \end{array} \right. \Rightarrow x = \dfrac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy phương trình đã cho có nghiệm \(x = \dfrac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}\).
Chọn D.
Công trình kiến trúc tiêu biểu của vương quốc Lào thời phong kiến là
Công trình kiến trúc tiêu biểu của vương quốc Cam-pu-chia thời phong kiến là
Pha Ngừm đã thành lập nước Lan Xang vào năm nào?
Quê hương của phong trào văn hóa Phục hưng là
Kinh đô của nước ta dưới thời Ngô là
Người chỉ huy đoàn tham hiểm lần đầu tiên đi vòng quanh trái đất bằng đường biển là
Quốc hiệu của nước ta dưới thời Đinh – Tiền Lê là
Người Cam-pu-chia đã sáng tạo ra chữ viết vào thời gian nào?
Em hãy trình bày sự hình thành và phát triển của các vương quốc phong kiến Đông Nam Á từ nửa sau thế kỷ X đến đầu thế kỷ XVI?
Bằng kiến thức đã học về cuộc kháng chiến chống quân xâm lược Tống (1075 - 1077), em hãy:
a. Chỉ ra những nét độc đáo trong cách đánh giặc của Lý Thường Kiệt?
b. Đánh giá vai trò của Lý Thường Kiệt trong cuộc kháng chiến?