[LỜI GIẢI] Có 6 chiếc ghế được kê thành một hàng ngang Xếp ngẫu nh - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Có 6 chiếc ghế được kê thành một hàng ngang Xếp ngẫu nh

Có 6 chiếc ghế được kê thành một hàng ngang Xếp ngẫu nh

Câu hỏi

Nhận biết

Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng


Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

- Đếm số cách xếp thỏa mãn bài toán \(n\left( A \right)\)


- Đếm số phần tử của không gian mẫu \(n\left( \Omega  \right)\)


- Tính xác suất \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

Giải chi tiết:

Đánh số thứ tự các ghế như sau: 1-2-3-4-5-6

Số cách xếp ngẫu nhiên 6 học sinh vào 6 chiếc ghế là \(6! = 720\) cách \( \Rightarrow n\left( \Omega  \right) = 720\).

Gọi A là biến cố: “Học sinh lớp C chỉ ngồi cạnh học sinh lớp B”.

TH1: Học sinh lớp C ngồi giữa 2 học sinh lớp B, ta coi B-C-B là 1 buộc, có 2 cách xếp 2 học sinh lớp B trong buộc này.

Số cách xếp buộc B-C-B vào 6 chiếc ghế là 4 cách (Xếp vào các vị trí 1-2-3, 2-3-4, 3-4-5, 4-5-6).

Số cách xếp 3 học sinh còn lại là 3! = 6 cách.

\( \Rightarrow \) Có 2.4.6 = 48 cách.

TH2: Học sinh lớp C ngồi ghế 1 hoặc 6 \( \Rightarrow \) Có 2 cách.

Ứng với mỗi cách xếp học sinh C có 2 cách chọn 1 học sinh B ngồi ở vị trí 2 hoặc 5.

Xếp 4 học sinh còn lại có 4! = 24 cách.

\( \Rightarrow \) Có \(2.2.24 = 96\) cách.

\( \Rightarrow n\left( A \right) = 48 + 96 = 144\).

Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{144}}{{720}} = \frac{1}{5}\).

Chọn D.

Ý kiến của bạn