[LỜI GIẢI] Cho tứ diện đều có chiều cao bằng h Thể tích của khối t - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho tứ diện đều có chiều cao bằng h Thể tích của khối t

Cho tứ diện đều có chiều cao bằng h Thể tích của khối t

Câu hỏi

Nhận biết

Cho tứ diện đều có chiều cao bằng h. Thể tích của khối tứ diện đã cho là:


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

- Gọi tứ diện đều ABCD cạnh a, sử dụng tính chất tam giác đều và định lí Pytago tính a theo h.


- Sử dụng công thức tính thể tích khối chóp có đường cao h, diện tích đáy B là \(V = \dfrac{1}{3}Bh\).

Giải chi tiết:

Gọi tứ diện đều ABCD cạnh a, O là trọng tâm tam giác dều BCD \( \Rightarrow AO \bot \left( {BCD} \right)\).

Gọi M là trung điểm của CD. Tam giác BCD đều cạnh a \( \Rightarrow BM = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow BO = \dfrac{2}{3}BM = \dfrac{{a\sqrt 3 }}{3}\).

Áp dụng định lí Pytago trong tam giác vuông ABO ta có:

\(\begin{array}{l}A{B^2} = B{O^2} + A{O^2}\\ \Leftrightarrow {a^2} = \dfrac{{{a^2}}}{3} + {h^2}\\ \Leftrightarrow \dfrac{{2{a^2}}}{3} = {h^2}\\ \Leftrightarrow {a^2} = \dfrac{{3{h^2}}}{2}\end{array}\)

\( \Rightarrow {S_{\Delta BCD}} = \dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{3{h^2}}}{2}.\dfrac{{\sqrt 3 }}{4} = \dfrac{{3\sqrt 3 {h^2}}}{8}\).

Vậy \({V_{ABCD}} = \dfrac{1}{3}AO.{S_{\Delta BCD}} = \dfrac{1}{3}.h.\dfrac{{3\sqrt 3 {h^2}}}{8} = \dfrac{{\sqrt 3 {h^3}}}{8}.\) 

Chọn B.

Ý kiến của bạn