[LỜI GIẢI] Cho tam giác ABC vuông tại A có AB = 12cm AC = 16cm Kẻ - Tự Học 365
KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY

Hệ thống lại kiến thức lớp 10–11–12

Cho tam giác ABC vuông tại A có AB = 12cm AC = 16cm Kẻ

Cho tam giác ABC vuông tại A có AB = 12cm AC = 16cm Kẻ

Câu hỏi

Nhận biết

Cho tam giác \(ABC\) vuông tại \(A,\) có \(AB = 12cm,\) \(AC = 16cm.\) Kẻ đường cao \(AM.\) Kẻ \(ME \bot AB.\)

a) Tính \(BC,\,\,\angle B,\,\,\angle C.\)

b) Tính độ dài \(AM,\,\,BM.\)

c) Chứng minh \(AE.AB = A{C^2} - M{C^2}.\)  


Đáp án đúng:

Lời giải của Tự Học 365

Phương pháp giải:

a) Sử dụng định lý Pitago để tính \(BC = \sqrt {A{B^2} + A{C^2}} .\)


Sử dụng các công thức về tỉ số lượng giác của góc nhọn trong tam giác vuông và định lý tổng số đo của 3 góc trong tam giác để tính số đo của \(\angle B,\,\,\angle C.\)


b) Áp dụng hệ thức lượng trong tam giác \(ABC\) vuông tại \(A,\) có đường cao \(AM\)  ta có: \(AM.BC = AB.AC\) và \(A{B^2} = BM.BC.\)  


c) Áp dụng hệ thức lượng trong tam giác \(AMB\) vuông tại \(A,\) có đường cao \(ME\)  ta có: \(A{M^2} = AE.AB\) và định lý Pitago cho \(\Delta AMC\) vuông tại \(M\) để chứng minh đẳng thức đề bài yêu cầu.

Giải chi tiết:

a) Tính \(BC,\,\,\angle B,\,\,\angle C.\)

Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có:

\(BC = \sqrt {A{B^2} + A{C^2}} \) \( = \sqrt {{{12}^2} + {{16}^2}}  = \sqrt {400} \) \( = 20\,\,cm.\)

Xét \(\Delta ABC\) vuông tại \(A\) ta có:

\(\sin \angle B = \dfrac{{AC}}{{AB}} = \dfrac{{16}}{{20}} = 0,8\) \( \Rightarrow \angle B \approx {53^0}.\)

\( \Rightarrow \angle C = {90^0} - \angle B\) \( = {90^0} - {53^0} = {37^0}.\)

b) Tính độ dài \(AM,\,\,BM.\)

Áp dụng hệ thức lượng trong tam giác \(ABC\) vuông tại \(A,\) có đường cao \(AM\)  ta có: \(AM.BC = AB.AC\)

\( \Rightarrow AM = \dfrac{{AB.AC}}{{BC}} = \dfrac{{12.16}}{{20}} = 9.6\,\,\left( {cm} \right).\)

Lại có: \(A{B^2} = BM.BC\) \( \Rightarrow BM = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{{12}^2}}}{{20}} = 7,2\,\,cm.\)

Vậy \(AM = 9,6\,\,cm\) và \(BM = 7,2\,\,cm.\)

c) Chứng minh \(AE.AB = A{C^2} - M{C^2}.\) 

Áp dụng hệ thức lượng trong tam giác \(AMB\) vuông tại \(A,\) có đường cao \(ME\)  ta có: \(A{M^2} = AE.AB\)

Áp dụng định lý Pitago cho \(\Delta AMC\) vuông tại \(M\) ta có: \(A{M^2} = A{C^2} - M{C^2}\)

\( \Rightarrow AE.AB = A{C^2} - M{C^2}\,\,\left( { = A{M^2}} \right)\,\,\left( {dpcm} \right).\)

Ý kiến của bạn