[LỜI GIẢI] Cho số phức z thỏa mãn 3z + i overline z  + 8 = 0 Tổng - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho số phức z thỏa mãn 3z + i overline z  + 8 = 0 Tổng

Cho số phức z thỏa mãn 3z + i overline z  + 8  = 0 Tổng

Câu hỏi

Nhận biết

Cho số phức \(z\) thỏa mãn \(3z + i\left( {\overline z  + 8} \right) = 0\). Tổng phần thực và phần ảo của \(z\) bằng:


Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

- Đặt \(z = a + bi\,\,\left( {a;b \in \mathbb{R}} \right)\) \( \Rightarrow \overline z  = a - bi\).


- Thay vào giả thiết \(3z + i\left( {\overline z  + 8} \right) = 0\), đưa phương trình về dạng \(A + Bi = 0 \Leftrightarrow A = B = 0\).

Giải chi tiết:

Đặt \(z = a + bi\,\,\left( {a;b \in \mathbb{R}} \right)\) \( \Rightarrow \overline z  = a - bi\).

Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,3z + i\left( {\overline z  + 8} \right) = 0\\ \Leftrightarrow 3\left( {a + bi} \right) + i\left( {a - bi + 8} \right) = 0\\ \Leftrightarrow 3a + 3bi + ai + b + 8i = 0\\ \Leftrightarrow 3a + b + \left( {a + 3b + 8} \right)i = 0\\ \Leftrightarrow \left\{ \begin{array}{l}3a + b = 0\\a + 3b + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 3\end{array} \right.\end{array}\)

Vậy tổng phần thực và phần ảo của \(z\) là \(a + b = 1 + \left( { - 3} \right) =  - 2\).

Chọn D.

Ý kiến của bạn