[LỜI GIẢI] Cho khối lăng trụ tam giác đều có cạnh đáy bằng a 2 và - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho khối lăng trụ tam giác đều có cạnh đáy bằng a 2 và

Cho khối lăng trụ tam giác đều có cạnh đáy bằng a 2  và

Câu hỏi

Nhận biết

Cho khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \) và mỗi mặt bên đều có diện tích bằng \(4{a^2}.\) Thể tích của khối lăng trụ đã cho bằng


Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

- Diện tích hình chữ nhật bằng tích chiều dài và chiều rộng, dựa vào đó tính chiều cao của lăng trụ.


-  Thể tích lăng trụ \(V = S.h\) với \(S\) là diện tích đáy và \(h\) là chiều cao lăng trụ.

Giải chi tiết:

Các mặt bên của hình lăng trụ tam giác đều là hình chữ nhật.

Xét hình chữ nhật \(ABB'A'\) ta có \({S_{ABB'A'}} = AB.AA'\) \( \Leftrightarrow 4{a^2} = a\sqrt 2 .AA' \Leftrightarrow AA' = 2a\sqrt 2 \).

Diện tích đáy \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{{\left( {a\sqrt 2 } \right)}^2}.\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{2}\) (Do tam giác \(ABC\) đều).

Vậy thể tích khối lăng trụ là \(V = AA'.{S_{\Delta ABC}} = 2a\sqrt 2 .\frac{{{a^2}\sqrt 3 }}{2} = {a^3}\sqrt 6 \).

Chọn D.

Ý kiến của bạn