Cho hình nón có chiều cao bằng a. Biết rằng khi cắt hình nón đã cho bởi một mặt phẳng đi qua đỉnh hình nón và cách tâm của đáy hình nón một khoảng bằng \(\dfrac{a}{3}\), thiết diện thu được là một tam giác vuông. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng:
Phương pháp giải:
- Giả sử thiết diện của hình chóp cắt bởi mặt phẳng đi qua đỉnh và cách tâm một khoảng \(\dfrac{a}{3}\) là tam giác \(SAB\). Gọi \(O\) là tâm đáy của hình nón.
- Xác định khoảng cách từ \(O\) đến \(\left( {SAB} \right)\).
- Sử dụng hệ thức lượng và định lí Pytago trong tam giác vuông tính bán kính đáy của hình nón.
- Thể tích khối nón có chiều cao \(h\), bán kính đáy \(r\) là \(V = \dfrac{1}{3}\pi {r^2}h\).
Giải chi tiết:

Giả sử thiết diện của hình chóp cắt bởi mặt phẳng đi qua đỉnh và cách tâm một khoảng \(\dfrac{a}{3}\) là tam giác \(SAB\), ta có \(\Delta SAB\) vuông cân tại \(S\).
Gọi \(O\) là tâm đáy của hình nón, gọi \(M\) là trung điểm của \(AB\). Trong \(\left( {SOM} \right)\) kẻ \(OH \bot SM\,\,\left( {H \in SM} \right)\).
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}AB \bot OM\\AB \bot SO\end{array} \right. \Rightarrow SB \bot \left( {SOM} \right) \Rightarrow AB \bot OH\\\left\{ \begin{array}{l}OH \bot AB\\OH \bot SM\end{array} \right. \Rightarrow OH \bot \left( {SAB} \right)\\ \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OH = \dfrac{a}{3}\end{array}\)
Áp dụng hệ thức lượng trong tam giác vuông \(SOM\) ta có:
\(\begin{array}{l}\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{M^2}}}\\ \Leftrightarrow \dfrac{9}{{{a^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{O{M^2}}}\\ \Leftrightarrow \dfrac{1}{{O{M^2}}} = \dfrac{8}{{{a^2}}}\\ \Leftrightarrow OM = \dfrac{{a\sqrt 2 }}{4}\end{array}\)
Lại có \(SM = \dfrac{{SO.OM}}{{OH}} = \dfrac{{a.\dfrac{{a\sqrt 2 }}{4}}}{{\dfrac{a}{3}}} = \dfrac{{3\sqrt 2 a}}{4}\), tam giác \(SAB\) vuông cân tại \(S\) nên \(SM = \dfrac{1}{2}AB\).
\( \Rightarrow AB = 2SM = \dfrac{{3\sqrt 2 a}}{2}\) \( \Rightarrow AM = \dfrac{1}{2}AB = \dfrac{{3\sqrt 2 a}}{4}\).
Áp dụng định lí Pytago trong tam giác vuông \(OAM\) ta có:
\(OA = \sqrt {O{M^2} + A{M^2}} = \sqrt {{{\left( {\dfrac{{a\sqrt 2 }}{4}} \right)}^2} + {{\left( {\dfrac{{3\sqrt 2 a}}{4}} \right)}^2}} = \dfrac{{a\sqrt 5 }}{2}\).
Vậy thể tích khối nón là: \(V = \dfrac{1}{3}\pi O{A^2}.SO = \dfrac{1}{3}\pi .{\left( {\dfrac{{a\sqrt 5 }}{2}} \right)^2}.a = \dfrac{{5\pi {a^3}}}{{12}}\).
Chọn A.
Kinh đô của nước ta dưới thời Ngô là
Pha Ngừm đã thành lập nước Lan Xang vào năm nào?
Bằng kiến thức đã học về cuộc kháng chiến chống quân xâm lược Tống (1075 - 1077), em hãy:
a. Chỉ ra những nét độc đáo trong cách đánh giặc của Lý Thường Kiệt?
b. Đánh giá vai trò của Lý Thường Kiệt trong cuộc kháng chiến?
Quê hương của phong trào văn hóa Phục hưng là
Công trình kiến trúc tiêu biểu của vương quốc Lào thời phong kiến là
Người chỉ huy đoàn tham hiểm lần đầu tiên đi vòng quanh trái đất bằng đường biển là
Công trình kiến trúc tiêu biểu của vương quốc Cam-pu-chia thời phong kiến là
Quốc hiệu của nước ta dưới thời Đinh – Tiền Lê là
Em hãy trình bày sự hình thành và phát triển của các vương quốc phong kiến Đông Nam Á từ nửa sau thế kỷ X đến đầu thế kỷ XVI?
Người Cam-pu-chia đã sáng tạo ra chữ viết vào thời gian nào?