[LỜI GIẢI] Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60^0 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60^0

Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60^0

Câu hỏi

Nhận biết

Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng \({60^0}\). Diện tích xung quanh của hình nón đã cho bằng:


Đáp án đúng: A

Lời giải của Tự Học 365

Phương pháp giải:

- Chứng minh thiết diện qua trục là tam giác đều, từ đó suy ra độ dài đường sinh \(l\) của hình nón.


- Diện tích xung quanh hình nón có bán kính đáy \(r\), độ dài đường sinh \(l\) là \({S_{xq}} = \pi rl\).

Giải chi tiết:

Gọi \(S\) là đỉnh của hình nón và \(AB\) là 1 đường kính của hình nón, khi đó ta có góc ở đỉnh của hình nón là \(\angle ASB = {60^0}\).

\( \Rightarrow \Delta SAB\) đều \( \Rightarrow l = SA = AB = 2r = 10\).

Vậy diện tích xung quanh của hình nón là \({S_{xq}} = \pi rl = \pi .5.10 = 50\pi \).

Chọn A.

Ý kiến của bạn