[LỜI GIẢI] Cho hình lăng trụ đều ABCA’B’C’ có cạnh đáy bằng 2a cạn - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình lăng trụ đều ABCA’B’C’ có cạnh đáy bằng 2a cạn

Cho hình lăng trụ đều ABCA’B’C’ có cạnh đáy bằng 2a cạn

Câu hỏi

Nhận biết

Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng 2a, cạnh bên bằng a. Tính góc giữa hai mặt pẳng (AB’C’) và (A’B’C’)?


Đáp án đúng: A

Lời giải của Tự Học 365

Phương pháp giải:

- Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.


- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Giải chi tiết:

Gọi M là trung điểm của B'C', do tam giác A'B'C' đều nên \(A'M \bot B'C'\).
Ta có: \(\left\{ \begin{array}{l}B'C' \bot A'M\\B'C' \bot AA'\end{array} \right. \Rightarrow B'C' \bot \left( {AA'M} \right)\), suy ra \(B'C' \bot AM\).
Ta có: \(\left\{ \begin{array}{l}\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'\\AM \subset \left( {AB'C'} \right);\,\,AM \bot B'C'\\A'M \subset \left( {A'B'C'} \right);\,\,A'M \bot B'C'\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {AB'C'} \right);\left( {A'B'C'} \right)} \right) = \angle \left( {AM;A'M} \right) = \angle A'MA\).
Tam giác A'B'C' đều cạnh 2a nên \(A'M = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).
Xét tam giác vuông AA'M có: \(\tan \angle A'MA = \dfrac{{AA'}}{{A'M}} = \dfrac{a}{{a\sqrt 3 }} = \dfrac{1}{{\sqrt 3 }}\) \( \Rightarrow \angle A'MA = {30^0}\).
Chọn A.

Ý kiến của bạn