[LỜI GIẢI] Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O BD - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O BD

Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O BD

Câu hỏi

Nhận biết

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), \(BD = 1\). Hình chiếu vuông góc \(H\) của \(S\) trên mặt phẳng đáy \(\left( {ABCD} \right)\) là trung điểm của \(OD\). Đường thẳng \(SD\) tạo với mặt đáy một góc bằng \({60^0}\). Thể tích khối chóp \(S.ABCD\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Phương pháp giải:

- Tính độ dài \(HD\).


- Xác định góc giữa \(SD\) và mặt đáy là góc giữa \(SD\) và hình chiếu của \(SD\) lên \(\left( {ABCD} \right)\).


- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính độ dài đường cao \(SH\).


- Sử dụng công thức tính thể tích khối chóp: \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}}\).

Giải chi tiết:

Ta có: \(BD = 1 \Rightarrow HD = \dfrac{1}{4}BD = \dfrac{1}{4}\).

Vì \(SH \bot \left( {ABCD} \right)\) nên \(HD\) là hình chiếu vuông góc của \(SD\) lên \(\left( {ABCD} \right)\).

\( \Rightarrow \angle \left( {SD;\left( {ABCD} \right)} \right) = \angle \left( {SD;HD} \right) = \angle SDH = {60^0}\).

Xét tam giác vuông \(SHD\) có: \(SH = HD.\tan {60^0} = \dfrac{{\sqrt 3 }}{4}\).

Do \(ABCD\) là hình vuông có \(BD = 1 \Rightarrow AB = AD = \dfrac{{BD}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\) \( \Rightarrow {S_{ABCD}} = AB.AD = \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{{\sqrt 2 }} = \dfrac{1}{2}\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{\sqrt 3 }}{4}.\dfrac{1}{2} = \dfrac{{\sqrt 3 }}{{24}}\).

Chọn A.

Ý kiến của bạn