Phương pháp giải:
Sử dụng tỉ lệ thể tích Simpson.
Giải chi tiết:
Ta có:
\(\begin{array}{l}\dfrac{{{V_{S.AEF}}}}{{{V_{S.ABC}}}} = \dfrac{{SE}}{{SB}}.\dfrac{{SF}}{{SC}} = \dfrac{1}{3}.\dfrac{1}{2} = \dfrac{1}{6}\ \Rightarrow {V_{S.AEF}} = \dfrac{1}{6}{V_{S.ABC}}\ \Rightarrow {V_{A.BCFE}} = {V_{S.ABC}} - {V_{S.AEF}} = {V_{S.ABC}} - \dfrac{1}{6}{V_{S.ABC}} = \dfrac{5}{6}{V_{S.ABC}}\end{array}\)
Ta có: \({S_{\Delta ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.a.2a = {a^2}\).
\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}} = \dfrac{1}{3}.3a.{a^2} = {a^3}\).
Vậy \({V_{A.BCFE}} = \dfrac{5}{6}{V_{S.ABC}} = \dfrac{{5{a^3}}}{6}\).