Cho hàm số \(y = {x^3} + 3{x^2}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {m;0} \right)\) sao cho từ \(M\) vẽ được ba tiếp tuyến đến đồ thị \(\left( C \right)\), trong đó có hai tiếp tuyến vuông góc với nhau. Khi đó khẳng định nào sau đây đúng?
Phương pháp giải:
- Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = {x_0}\): \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}.\)
- Cho \(M\left( {m;0} \right)\) thuộc tiếp tuyến trên, lập phương trình ẩn \({x_0}\) (tham số \(m\)).
- Tìm điều kiện để phương trình ẩn \({x_0}\) có 3 nghiệm phân biệt, áp dụng định lí Vi-ét.
- Sử dụng điều kiện 2 đường thẳng vuông góc khi và chỉ khi tích hệ số góc của chúng bằng \( - 1\), giải phương trình tìm \(m\) và đối chiếu điều kiện.
Giải chi tiết:
TXĐ: \(D = \mathbb{R}\). Ta có \(y' = 3{x^2} + 6x\).
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = \left( {3x_0^2 + 6{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 + 3x_0^2\).
Tiếp tuyến đi qua điểm \(M\left( {m;0} \right)\) nên ta có:
\(\begin{array}{l}\,\,\,\,\,0 = \left( {3x_0^2 + 6{x_0}} \right)\left( {m - {x_0}} \right) + x_0^3 + 3x_0^2\\ \Leftrightarrow 0 = 2x_0^3 + 3x_0^2 - 3mx_0^2 - 6m{x_0}\\ \Leftrightarrow {x_0}\left( {2x_0^2 + 3{x_0} - 3m{x_0} - 6m} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\2x_0^2 + 3\left( {1 - m} \right){x_0} - 6m = 0\,\,\,\left( 1 \right)\end{array} \right.\end{array}\)
Để từ \(M\) kẻ được 3 tiếp tuyến đến \(\left( C \right)\) thì phương trình (1) phải có 2 nghiệm phân biệt khác \(0\).
\( \Rightarrow \left\{ \begin{array}{l}\Delta = 9{\left( {1 - m} \right)^2} + 48m > 0\\ - 6m e 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9{m^2} + 30m + 9 > 0\\m e 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > - \dfrac{1}{3}\\m < - 3\end{array} \right.\\m e 0\end{array} \right.\)
Gọi \({x_1},\,\,{x_2}\) là hai nghiệm phân biệt của phương trình (1), áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{3m - 3}}{2}\\{x_1}{x_2} = - 3m\end{array} \right.\).
Hệ số góc của các tiếp tuyến kẻ từ \(M\) là: \(\left\{ \begin{array}{l}{k_0} = y'\left( 0 \right) = 0\\{k_1} = y'\left( {{x_1}} \right) = 3x_1^2 + 6{x_1}\\{k_2} = y'\left( {{x_2}} \right) = 3x_2^2 + 6{x_2}\end{array} \right.\).
Vì từ từ \(M\) vẽ được ba tiếp tuyến đến đồ thị \(\left( C \right)\), trong đó có hai tiếp tuyến vuông góc với nhau nên ta có:
\(\begin{array}{l}{k_1}{k_2} = - 1 \Leftrightarrow \left( {3x_1^2 + 6{x_1}} \right)\left( {3x_2^2 + 6{x_2}} \right) = - 1\\ \Leftrightarrow 9{\left( {{x_1}{x_2}} \right)^2} + 18{x_1}{x_2}\left( {{x_1} + {x_2}} \right) + 36{x_1}{x_2} = - 1\\ \Leftrightarrow 9.{\left( { - 3m} \right)^2} + 18\left( { - 3m} \right).\dfrac{{3m - 3}}{2} + 36\left( { - 3m} \right) = - 1\\ \Leftrightarrow 81{m^2} - 81{m^2} + 81m - 108m = - 1\\ \Leftrightarrow - 27m = - 1 \Leftrightarrow m = \dfrac{1}{{27}}\,\,\,\left( {tm} \right)\end{array}\)
Chọn A.
Bằng kiến thức đã học về cuộc kháng chiến chống quân xâm lược Tống (1075 - 1077), em hãy:
a. Chỉ ra những nét độc đáo trong cách đánh giặc của Lý Thường Kiệt?
b. Đánh giá vai trò của Lý Thường Kiệt trong cuộc kháng chiến?
Quốc hiệu của nước ta dưới thời Đinh – Tiền Lê là
Công trình kiến trúc tiêu biểu của vương quốc Cam-pu-chia thời phong kiến là
Quê hương của phong trào văn hóa Phục hưng là
Người chỉ huy đoàn tham hiểm lần đầu tiên đi vòng quanh trái đất bằng đường biển là
Công trình kiến trúc tiêu biểu của vương quốc Lào thời phong kiến là
Em hãy trình bày sự hình thành và phát triển của các vương quốc phong kiến Đông Nam Á từ nửa sau thế kỷ X đến đầu thế kỷ XVI?
Kinh đô của nước ta dưới thời Ngô là
Người Cam-pu-chia đã sáng tạo ra chữ viết vào thời gian nào?
Pha Ngừm đã thành lập nước Lan Xang vào năm nào?