[LỜI GIẢI] Cho hàm số y = [ cos sin ^2x ]^2 Tính đạo hàm của hàm - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số y = [ cos sin ^2x ]^2 Tính đạo hàm của hàm

Cho hàm số y = [ cos  sin ^2x  ]^2 Tính đạo hàm của hàm

Câu hỏi

Nhận biết

Cho hàm số \(y = \left[ {\cos \left( {{{\sin }^2}x} \right)} \right]^2\). Tính đạo hàm của hàm số:


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

- Sử dụng công thức tính đạo hàm hàm hợp \(\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\).


- Sử dụng các công thức tính đạo hàm hàm lượng giác: \(\left( {\sin u} \right)' = u'.\cos u\), \(\left( {\cos u} \right)' =  - u'.\sin u\).


- Sử dụng công thức nhân đôi: \(2\sin x\cos x = \sin 2x\).

Giải chi tiết:

\(\begin{array}{l}y' = 2\cos \left( {{{\sin }^2}x} \right).\left[ {\cos \left( {{{\sin }^2}x} \right)} \right]'\\y' =  - 2\cos \left( {{{\sin }^2}x} \right).\sin \left( {{{\sin }^2}x} \right).\left( {{{\sin }^2}x} \right)'\\y' =  - 2\sin \left( {{{\sin }^2}x} \right)\cos \left( {{{\sin }^2}x} \right).2\sin x\left( {\sin x} \right)'\\y' =  - 2\sin \left( {{{\sin }^2}x} \right)\cos \left( {{{\sin }^2}x} \right).2\sin x.\cos x\\y' =  - 2\sin 2x\sin \left( {{{\sin }^2}x} \right)\cos \left( {{{\sin }^2}x} \right)\end{array}\)

Chọn B.

Ý kiến của bạn