Cho hàm số \(f(x)\) nghịch biến trên \(\mathbb{R}\). Giá trị nhỏ nhất của hàm số \(g(x) = {e^{3{x^2} - 2{x^3}}} - f(x)\) trên đoạn \(\left[ {0;1} \right]\) bằng
Phương pháp giải:
- Tính đạo hàm hàm số \(g\left( x \right)\), đánh giá và sử dụng giả thiết chứng minh \(g'\left( x \right) > 0\).
- Nếu hàm số \(y = f\left( x \right)\) đồng biến trên \(\left[ {a;b} \right]\) thì giá trị nhỏ nhất của hàm số trên \(\left[ {a;b} \right]\) là \(f\left( a \right)\).
Giải chi tiết:
TXĐ : \(D = \mathbb{R}\).
Ta có \(g'\left( x \right) = \left( {6x - 6{x^2}} \right){e^{3{x^2} - 2{x^3}}} - f'\left( x \right)\)
Vì \(f\left( x \right)\) nghịch biến trên \(\mathbb{R}\) nên \(f'\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\) \( \Rightarrow - f'\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\).
Lại có \(\left( {6x - 6{x^2}} \right){e^{3{x^2} - 2{x^3}}} \ge 0\,\,\forall x \in \left[ {0;1} \right]\), do đó \(g'\left( x \right) \ge 0\) \(\forall x \in \mathbb{R}\) và bằng 0 tại hữu hạn điểm.
\( \Rightarrow \) Hàm số \(y = g\left( x \right)\) đồng biến trên \(\left( {0;1} \right)\).
Vậy \(\mathop {\min }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = {e^0} - f\left( 0 \right) = 1 - f\left( 0 \right)\).
Chọn D.
Em hãy trình bày sự hình thành và phát triển của các vương quốc phong kiến Đông Nam Á từ nửa sau thế kỷ X đến đầu thế kỷ XVI?
Pha Ngừm đã thành lập nước Lan Xang vào năm nào?
Công trình kiến trúc tiêu biểu của vương quốc Cam-pu-chia thời phong kiến là
Quê hương của phong trào văn hóa Phục hưng là
Kinh đô của nước ta dưới thời Ngô là
Công trình kiến trúc tiêu biểu của vương quốc Lào thời phong kiến là
Quốc hiệu của nước ta dưới thời Đinh – Tiền Lê là
Người chỉ huy đoàn tham hiểm lần đầu tiên đi vòng quanh trái đất bằng đường biển là
Người Cam-pu-chia đã sáng tạo ra chữ viết vào thời gian nào?
Bằng kiến thức đã học về cuộc kháng chiến chống quân xâm lược Tống (1075 - 1077), em hãy:
a. Chỉ ra những nét độc đáo trong cách đánh giặc của Lý Thường Kiệt?
b. Đánh giá vai trò của Lý Thường Kiệt trong cuộc kháng chiến?