Phương pháp giải:
Ta gắn trục tọa độ của parabol và các điểm M, N vào hệ trục tọa độ \(Oxy\) với \(Oy\) là tia \(OF\) và \(Ox\) là tia thuộc đường thẳng vuông góc với \(OF\) tại \(O\) để giải bài toán.
Giải chi tiết:
Ta gắn trục tọa độ của parabol và các điểm M, N vào hệ trục tọa độ \(Oxy\) với \(Oy\) là tia \(OF\) và \(Ox\) là tia thuộc đường thẳng vuông góc với \(OF\) tại \(O\), khi đó parabol đi qua gốc tọa độ và có dạng \(y = a{x^2}\) và hoành độ của điểm N bằng \(\dfrac{{MN}}{2}\) hay \(N\) có tọa độ là \(N\left( {45;9} \right)\),
Parabol đi qua hai điểm \(M,N\) nên ta có: \(9 = a{.45^2} \Leftrightarrow a = \dfrac{1}{{225}}\)
\( \Rightarrow \) Parabol là: \(y = \dfrac{1}{{225}}{x^2}\).
Đường thẳng vuông góc với trục của parabol tại \(F\) cắt parabol tại 2 điểm \(A,\,\,B\) nên hai điểm A và B thuộc parabol.
Gọi tọa độ của \(F\) là \(F\left( {0;t} \right)\,\,\left( {t > 0} \right)\), tọa độ của \(B\) là \(B\left( {{x_B},{y_B}} \right)\).
\(OF = \dfrac{1}{4}AB \Rightarrow FB = \dfrac{1}{2}AB = \dfrac{1}{2}.4OF = 2OF = 2t\)\( \Rightarrow {x_B} = FB = 2t\)
\(F,A,B\) cùng thuộc đường thẳng \(AB\) và song song với trục hoành nên có tung độ bằng nhau.
\( \Rightarrow {y_B} = t \Rightarrow B\left( {2t;t} \right)\).
Vì \(B\) là điểm thuộc parabol \(y = \dfrac{1}{{225}}{x^2}\) nên
\(t = \dfrac{1}{{225}}.{\left( {2t} \right)^2} \Leftrightarrow 4{t^2} = 225t \Leftrightarrow 4{t^2} - 225t = 0 \Leftrightarrow t\left( {4t - 225} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\,\,\,\,\,\left( {ktm} \right)\t = \dfrac{{225}}{4}\,\,\left( {tm} \right)\end{array} \right.\)
\( \Rightarrow OF = t = \dfrac{{225}}{4} = 56,25\left( {cm} \right)\)
Vậy \(OF = 56,25cm\).