[LỜI GIẢI] Biết log 2x = 6log 4a - 4log 2 b  - log d12c với abc  l - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Biết log 2x = 6log 4a - 4log 2 b  - log d12c với abc  l

Biết log 2x = 6log 4a - 4log 2 b  - log d12c với abc  l

Câu hỏi

Nhận biết

Biết \({\log _2}x = 6{\log _4}a - 4{\log _2}\sqrt b  - {\log _{\dfrac{1}{2}}}c\), với \(a,b,c\)  là các số thực dương bất kì. Khẳng định nào sau đây đúng?


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

Sử dụng một số công thức biến đổi của hàm logarit sau :


\(\begin{array}{l}{\log _a}{b^c} = c.{\log _a}b\\{\log _{{a^c}}}b = \dfrac{1}{c}.{\log _a}b\\{\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\\{\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}b - {\log _a}c\\\left( {0 < a e 1;b,c > 0} \right)\end{array}\)

Giải chi tiết:

Ta có :

\(\begin{array}{l}{\log _2}x = 6{\log _4}a - 4{\log _2}\sqrt b  - {\log _{\dfrac{1}{2}}}c\\ \Leftrightarrow {\log _2}x = 6{\log _{{2^2}}}a - 4{\log _2}{b^{\dfrac{1}{2}}} - {\log _{{2^{ - 1}}}}c\\ \Leftrightarrow {\log _2}x = 6.\dfrac{1}{2}{\log _2}a - 4.\dfrac{1}{2}{\log _2}b - \dfrac{1}{{ - 1}}{\log _2}c\\ \Leftrightarrow {\log _2}x = 3{\log _2}a - 2{\log _2}b + {\log _2}c\\ \Leftrightarrow {\log _2}x = {\log _2}{a^3} - {\log _2}{b^2} + {\log _2}c\\ \Leftrightarrow {\log _2}x = {\log _2}\dfrac{{{a^3}c}}{{{b^2}}}\\ \Leftrightarrow x = \dfrac{{{a^3}c}}{{{b^2}}}\end{array}\)

Chọn B.

Ý kiến của bạn