[LỜI GIẢI] Gọi K là trung điểm của AH Chứng minh tứ giác OEKD nội - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Gọi K là trung điểm của AH Chứng minh tứ giác OEKD nội

Gọi K là trung điểm của AH Chứng minh tứ giác OEKD nội

Câu hỏi

Nhận biết

Đáp án đúng:

Lời giải của Tự Học 365

Giải chi tiết:

Kéo dài AH cắt BC tại F.

Xét tứ giác AEHD có \(\angle AEH + \angle ADH = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác AEDH nội tiếp đường tròn đường kính AH.

Lại có K là trung điểm của AH \( \Rightarrow K\) là tâm đường tròn ngoại tiếp tứ giác AEHD.

\( \Rightarrow KA = KE = KH = KD\)

\( \Rightarrow \Delta KDH\) cân tại K \( \Rightarrow \angle KDH = \angle KHD = \angle BHF\) (1)

Xét tam giác OBD có \(OB = OD\,\left( { = R} \right) \Rightarrow \Delta OBD\) cân tại O \( \Rightarrow \angle ODB = \angle OBD\)  (2)

Từ (1) và (2) \( \Rightarrow \angle KDH + \angle ODB = \angle BHF + \angle OBD = {90^0} \Rightarrow \angle KDO = {90^0}\)

Chứng minh tương tự ta có:

\(\Delta KEH\) cân tại K \( \Rightarrow \angle KEH = \angle KHE = \angle CHF\)

Tam giác OCE có OC = OE \( \Rightarrow \Delta OCE\) cân tại \(O \Rightarrow \angle OEC = \angle OCE\)

\( \Rightarrow \angle KEH + \angle OEC = \angle CHF + \angle OCE = {90^0} \Rightarrow \angle KEO = {90^0}\)

Xét tứ giác OEKD có  \(\angle KDO + \angle KEO = {90^0} + {90^0} = {180^0} \Rightarrow  \) Tứ giác OEKD là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

Ý kiến của bạn