[LỜI GIẢI] Cho hàm số y = f x có đạo hàm f x = x - 9 x^2 - 16 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số y = f x có đạo hàm f x = x - 9 x^2 - 16

Cho hàm số y = f x  có đạo hàm f x  =  x - 9  x^2 - 16

Câu hỏi

Nhận biết

Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

Lập bảng biến thiên của hàm số \(h\left( x \right) = \left| {{x^3} + 7x} \right|\)


Tính đạo hàm \(g'\left( x \right)\) và tìm nghiệm của phương trình \(g'\left( x \right) = 0\)


Từ đó tìm mối liên hệ về tương giao giữa đồ thị hàm số \(f'\left( x \right),\,g'\left( x \right)\) và \(h'\left( x \right)\) để tìm được số giá trị \(m\) thỏa mãn.

Giải chi tiết:

Bảng biến thiên của \(h\left( x \right) = \left| {{x^3} + 7x} \right|\)

Xét \(g\left( x \right) = f\left( {\left| {{x^3} + 7x} \right| + m} \right)\). Ta có: \(g'\left( x \right) = \left( {\left| {{x^3} + 7x} \right|} \right)'.f'\left( {\left| {{x^3} + 7x} \right| + m} \right) = \left( {h\left( x \right)} \right)'.f'\left( {\left| {{x^3} + 7x} \right| + m} \right)\)

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}h'\left( x \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\f'\left( {\left| {{x^3} + 7x} \right| + m} \right) = 0\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Từ BBT của \(h\left( x \right) \Rightarrow h'\left( x \right) = 0\) chỉ chứa \(1\) nghiệm \(x = 0\) là điểm cực trị của \(h\left( x \right).\)

Do đó phương trình \(\left( 1 \right)\) có \(x = 0\) là nghiệm bội lẻ.

\(f'\left( x \right) = \left( {x - 9} \right)\left( {{x^2} - 16} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 9\\x = 4\\x =  - 4\end{array} \right.\)

Phương trình \(\left( 2 \right)\) \( \Leftrightarrow \left[ \begin{array}{l}\left| {{x^3} + 7x} \right| + m = 9\\\left| {{x^3} + 7x} \right| + m =  - 4\\\left| {{x^3} + 7x} \right| + m = 4\end{array} \right.\)

Ta có bảng biến thiên:

Để hàm số \(g\left( x \right)\) có ít nhất \(3\) điểm cực trị thì ít nhất \(1\) trong \(3\) đường thẳng \(y = 9,\,y = 4,\,y =  - 4\) phải cắt \(\left( {\left| {{x^3} + 7x} \right| + m} \right)\) tại \(2\) điểm phân biệt (\(2\) nghiệm bội lẻ khác \(0\)).

\( \Leftrightarrow m < 9\). Có tất cả \(8\) giá trị nguyên dương \(m\) thỏa mãn.

Chọn D

Ý kiến của bạn