[LỜI GIẢI] Giải bất phương trình sau x^2 + 4x  + 2 x - 2  2x^2 - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Giải bất phương trình sau x^2 + 4x  + 2 x - 2  2x^2

Giải bất phương trình sau  x^2 + 4x  + 2 x - 2    2x^2

Câu hỏi

Nhận biết

Giải bất phương trình sau: \(\sqrt {{x^2} + 4x}  + 2\sqrt {x - 2}  \ge \sqrt {2{x^2} + 12x - 8} .\)


Đáp án đúng: B

Lời giải của Tự Học 365

Phương pháp giải:

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Giải chi tiết:

\(\sqrt {{x^2} + 4x}  + 2\sqrt {x - 2}  \ge \sqrt {2{x^2} + 12x - 8} \,\,\left( * \right)\)    

Điều kiện: \(x \ge 2.\)

Đặt \(\left\{ \begin{array}{l}\sqrt {{x^2} + 4x}  = a\\2\sqrt {x - 2}  = b\,\,\end{array} \right..\)

Với \(x \ge 2\) thì \(a > 0,\,\,b \ge 0.\)

Ta có: \(2{x^2} + 12x - 8 = 2\left( {{x^2} + 4x} \right) + 4\left( {x - 2} \right) = 2{a^2} + {b^2}.\)

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow a + b \ge \sqrt {2{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + 2ab + {b^2} \ge 2{a^2} + {b^2}\\ \Leftrightarrow 2ab \ge {a^2}\\ \Leftrightarrow 2b \ge a\,\,\,\,\,\left( {do\,\,\,a > 0} \right)\\ \Leftrightarrow 4\sqrt {x - 2}  \ge \sqrt {{x^2} + 4x} \\ \Leftrightarrow 16\left( {x - 2} \right) \ge {x^2} + 4x\\ \Leftrightarrow {x^2} - 12x + 32 \le 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 8} \right) \le 0\\ \Leftrightarrow 4 \le x \le 8.\end{array}\)

Kết hợp với điều kiện ta có \(4 \le x \le 8\) là tập nghiệm của bất phương trình.

Chọn B.

Ý kiến của bạn