[LỜI GIẢI] Trong không gian Oxyz cho hình thang cân ABCD có đáy AB - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz cho hình thang cân ABCD có đáy AB

Trong không gian Oxyz cho hình thang cân ABCD có đáy AB

Câu hỏi

Nhận biết

Trong không gian Oxyz cho hình thang cân ABCD có đáy ABCD. Biết \(A\left( {3;1; - 2} \right),\) \(B\left( { - 1;3;2} \right),\)\(C\left( { - 6;3;6} \right);\) \(D\left( {a;b;c} \right);\) \(a,b,c \in \mathbb{R}\). Giá trị \(a + b + c\) bằng


Đáp án đúng: D

Lời giải của Tự Học 365

Phương pháp giải:

- Sử dụng tính chất hình thang cân: ABCD là hình thang cân nên \(\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\)


- \(\overrightarrow {BA} ,\,\,\overrightarrow {CD} \) cùng hướng nên \(\overrightarrow {CD}  = k\overrightarrow {BA} \,\,\left( {k > 0} \right)\), tham số hóa tọa độ điểm \(D\).


- Thay vào biểu thức \(\) rồi tìm D.


- Loại trường hợp \(\overrightarrow {AD} ,\,\,\overrightarrow {BC} \) cùng phương.

Giải chi tiết:

Vì \(ABCD\)  là hình thang cân nên \(\left\{ \begin{array}{l}AD = BC\\AB\parallel CD\end{array} \right.\)

Ta có: \(A\left( {3;1; - 2} \right);\,\,\,B\left( { - 1;3;2} \right);\,\,\,C\left( { - 6;3;6} \right);\,\,\,D\left( {a;b;c} \right)\).

\( \Rightarrow \overrightarrow {BA}  = \left( {4; - 2; - 4} \right);\,\,\overrightarrow {CD}  = \left( {a + 6;b - 3;c - 6} \right)\).

Vì \(\overrightarrow {BA} ,\,\,\overrightarrow {CD} \) cùng hướng nên \(\overrightarrow {CD}  = k\overrightarrow {BA} \,\,\left( {k > 0} \right)\), khi đó ta có:

\(\left\{ \begin{array}{l}a + 6 = 4k\\b - 3 =  - 2k\\c - 6 =  - 4k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4k - 6\\b =  - 2k + 3\\c =  - 4k + 6\end{array} \right.\) \( \Rightarrow D\left( {4k - 6; - 2k + 3; - 4k + 6} \right)\).

Vì \(ABCD\) là hình thang cân nên \(AD = BC \Leftrightarrow A{D^2} = B{C^2}\).

\(\begin{array}{l} \Leftrightarrow {\left( {4k - 9} \right)^2} + {\left( { - 2k + 2} \right)^2} + {\left( { - 4k + 8} \right)^2} = {\left( { - 5} \right)^2} + {0^2} + {4^2}\\ \Leftrightarrow 36{k^2} - 144k + 108 = 0 \Leftrightarrow \left[ \begin{array}{l}k = 3\\k = 1\end{array} \right.\,\,\,\left( {tm} \right)\end{array}\)

Với \(k = 3 \Rightarrow D\left( {6; - 3; - 6} \right)\).

Khi đó ta có: \(\overrightarrow {AD}  = \left( {3; - 4; - 4} \right),\,\,\overrightarrow {BC}  = \left( { - 5;0;4} \right)\) không cùng phương (thỏa mãn).

Với \(k = 1 \Rightarrow D\left( { - 2;1;2} \right)\).

Khi đó ta có: \(\overrightarrow {AD}  = \left( { - 5;0;4} \right),\,\,\overrightarrow {BC}  = \left( { - 5;0;4} \right)\) cùng phương (không thỏa mãn).

Vậy \(D\left( {6; - 3; - 6} \right) \Rightarrow a + b + c =  - 3.\)

Chọn D.

Ý kiến của bạn