Xét một phép thử có không gian mẫu \(\Omega \) và \(A\) là một biến cố của phép thử đó. Phát biểu nào sau đây sai ?
Giải chi tiết:
Xác suất của biến cố \(A\) là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} \Rightarrow \) đáp án A đúng.
Ta có: \(0 \le P\left( A \right) \le 1 \Rightarrow \) đáp án B đúng.
Gọi \(\overline A \) là biến cố đối của biến cố \(A\) thì \(P\left( A \right) = 1 - P\left( {\overline A } \right) \Rightarrow \) đáp án C đúng.
\(P\left( A \right) = 1\) khi và chỉ khi \(A\) là biến cố chắc \( \Rightarrow \) đáp án D sai.
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.