Xác định \(k\) để (C) cắt đường thẳng \(y = kx\) tại ba điểm phân biệt.
Giải chi tiết:
Với \(m = 0\) ta có:\(y = {x^3}-4{x^2}-4x\).
Xét phương trình hoành độ giao điểm: \({x^3}-4{x^2}-4x = kx\) (2)
Đường thẳng\(y = kx\) cắt (C) tại ba điểm phân biệt nếu phương trình (2) có ba nghiệm phân biệt.
Có \(\left( 2 \right) \Leftrightarrow x\left[ {{x^2} - 4x - \left( {k + 4} \right)} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 4x - \left( {k + 4} \right) = 0\,\,\left( 3 \right)\end{array} \right.\)
\(\left( 2 \right)\) có ba nghiệm phân biệt \( \Leftrightarrow \left( 3 \right)\) có hai nghiệm phân biệt khác \(0\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = k + 8 > 0\\k \ne - 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}k > - 8\\k \ne - 4\end{array} \right.\).
Vậy với \(k > - 8\) và \(k \ne - 4\) thì \(\left( C \right)\) cắt đường thẳng \(y = kx\) tại ba điểm phân biệt.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.