Trong mặt phẳng với hệ trục tọa độ \(Oxy,\) cho đường thẳng \(d\) cắt hai trục \(Ox\) và \(Oy\) lần lượt tại 2 điểm \(A\left( {a;0} \right)\) và \(B\left( {0;b} \right)\) \(\left( {a \ne 0,\,\,b \ne 0} \right)\). Viết phương trình đường thẳng \(d\).
Giải chi tiết:
Phương trình đường thẳng \(\left( d \right):\,\,\frac{x}{a} + \frac{y}{b} = 1\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.