Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(H\left( 1;\text{1};-3 \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(H\) cắt các trục tọa độ \(Ox\), \(Oy\), \(Oz\) lần lượt tại \(A\), \(B\), \(C\) (khác \(O\)) sao cho \(H\) là trực tâm tam giác \(ABC\) là
Giải chi tiết:
Hình vẽ tham khảo

Do \(H\) là trực tâm \(\Delta ABC\Rightarrow AH\bot BC\).
Mặt khác \(OA\bot \left( OBC \right)\)\(\Rightarrow OA\bot BC\)\(\Rightarrow BC\bot \left( OAH \right)\)\(\Rightarrow OH\bot BC\).
Tương tự: \(OH\bot AB\)\(\Rightarrow OH\bot \left( ABC \right)\) hay \(\overrightarrow{OH}=\left( 1;1;-3 \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
Hơn nữa, \(\left( P \right)\) đi qua \(H\left( 1;1;-3 \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \(x+y-3z-11=0\).
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.