Trong không gian với hệ trục tọa độ \(Oxyz\), cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Giải chi tiết:
Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a = - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.
Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = 1,b = 1,c = 1,d = - 8\) có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \) là một phương trình mặt cầu.
Xét phương án C có : \(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\) .
Phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = 1,b = - \frac{1}{2},c = - \frac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \frac{1}{4} + \frac{1}{4} - 8 < 0.\)
Không phải là phương trình mặt cầu.
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.