Trong không gian với hệ trục tọa độ \(Oxyz,\) cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tìm tọa độ của vectơ \(\overrightarrow a \).\(\)
Giải chi tiết:
Ta có: \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \Rightarrow \overrightarrow a = \left( { - 1;\;2; - 3} \right).\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.