[LỜI GIẢI]  Trong không gian với hệ trục tọa độ Oxyz cho A( 1; 2; 3 ) B( 3; 4; 4 ). Tìm tất cả các giá trị của - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

 Trong không gian với hệ trục tọa độ Oxyz cho A( 1; 2; 3 ) B( 3; 4; 4 ). Tìm tất cả các giá trị của

 Trong không gian với hệ trục tọa độ Oxyz cho A( 1; 2; 3 ) B( 3; 4; 4 ). Tìm tất cả các giá trị của

Câu hỏi

Nhận biết

Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( 1;\ 2;\ 3 \right),\ B\left( 3;\ 4;\ 4 \right).\) Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng \(2x+y+mz-1=0\) bằng độ dài đoạn thẳng AB.


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Đặt \(\left( \alpha  \right):\ 2x+y+mz-1=0.\)

Ta có: \(d\left( A;\ \left( \alpha  \right) \right)=\frac{\left| 2.1+2+3.m-1 \right|}{\sqrt{{{2}^{2}}+{{1}^{2}}+{{m}^{2}}}}=\frac{\left| 3+3m \right|}{\sqrt{{{m}^{2}}+5}}.\)

\(\begin{array}{l}\overrightarrow {AB}  = \left( {2;\;2;\;1} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2} + 1}  = 3.\\ \Rightarrow d\left( {A;\left( \alpha  \right)} \right) = AB \Leftrightarrow \frac{{\left| {3 + 3m} \right|}}{{\sqrt {{m^2} + 5} }} = 3\\ \Leftrightarrow \left| {m + 1} \right| = \sqrt {{m^2} + 5} \\ \Leftrightarrow {m^2} + 2m + 1 = {m^2} + 5\\ \Leftrightarrow m = 2.\end{array}\)

Chọn B

Ý kiến của bạn