[LỜI GIẢI] Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng (alph - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng (alph

Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng (alph

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng \((\alpha ):x + 3y - z + 1 = 0,\)\((\beta ):2x - y + z - 7 = 0\) .


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(\overrightarrow {{n_\alpha }}  = \left( {1;\;3; - 1} \right),\;\;\overrightarrow {{n_\beta }}  = \left( {2; - 1;\;1} \right).\)

\(d = \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{u_d}}  \bot \overrightarrow {{n_\alpha }} \\\overrightarrow {{u_d}}  \bot \overrightarrow {{n_\beta }} \end{array} \right. \Rightarrow \overrightarrow {{u_d}}  = \left[ {\overrightarrow {{n_\alpha }} ,\;\overrightarrow {{n_\beta }} } \right] = \left( {2; - 3; - 7} \right)//\left( { - 2;3;7} \right)\)

+) Tìm tọa độ điểm \(A\left( {{x_0};\;{y_0};\;{z_0}} \right)\) thuộc hai mặt phẳng \(\left( \alpha  \right),\;\;\left( \beta  \right):\)

Chọn \({y_0} = 0 \Rightarrow \left( {{x_0};\;{z_0}} \right)\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x_0} - {z_0} + 1 = 0\\2{x_0} + {z_0} - 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 2\\{z_0} = 3\end{array} \right.\)

\( \Rightarrow A\left( {2;\;0;\;3} \right) \Rightarrow \) phương trình đường thẳng \(d:\;\;\dfrac{{x - 2}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z - 3}}{7}.\)

Chọn D.

Ý kiến của bạn