[LỜI GIẢI] Trong không gian với hệ tọa độ Oxyz cho S( 4;2;2 ) và các điểm ABC lần lượt thuộc các trục Ox Oy Oz - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian với hệ tọa độ Oxyz cho S( 4;2;2 ) và các điểm ABC lần lượt thuộc các trục Ox Oy Oz

Trong không gian với hệ tọa độ Oxyz cho S( 4;2;2 ) và các điểm ABC lần lượt thuộc các trục Ox Oy Oz

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ \(Oxyz\), cho \(S\left( {4;2;2} \right)\) và các điểm \(A,\,\,B,\,\,C\) lần lượt thuộc các trục \(Ox\), \(Oy\), \(Oz\) sao cho hình chóp \(S.ABC\) có các cạnh \(SA,\,\,SB,\,\,SC\) đôi một vuông góc. Tính thể tích khối chóp \(S.ABC\).


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(A\left( {a;0;0} \right) \in Ox\), \(B\left( {0;b;0} \right) \in Oy\), \(C\left( {0;0;c} \right) \in Oz\).

Ta có: \(\overrightarrow {SA} = \left( {a - 4; - 2; - 2} \right)\), \(\overrightarrow {SB} = \left( { - 4;b - 2; - 2} \right)\), \(\overrightarrow {SC} = \left( { - 4; - 2;c - 2} \right)\).

\(\left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {SB} = 0\\\overrightarrow {SB} .\overrightarrow {SC} = 0\\\overrightarrow {SA} .\overrightarrow {SC} = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 4\left( {a - 4} \right) - 2\left( {b - 2} \right) + 4 = 0\\16 - 2\left( {b - 2} \right) - 2\left( {c - 2} \right) = 0\\ - 4\left( {a - 4} \right) + 4 - 2\left( {c - 2} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 4a - 2b + 24 = 0\\ - 2b - 2c + 24 = 0\\ - 4a - 2c + 24 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 6\end{array} \right.\).

\( \Rightarrow A\left( {3;0;0} \right);\,\,B\left( {0;6;0} \right);\,\,C\left( {0;0;6} \right)\)

\(\begin{array}{l} \Rightarrow SA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} = 3\\\,\,\,\,\,\,SB = \sqrt {{{\left( { - 4} \right)}^2} + {4^2} + {{\left( { - 2} \right)}^2}} = 6\\\,\,\,\,\,\,SC = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 2} \right)}^2} + {4^2}} = 6\end{array}\)

Vậy \({V_{S.ABC}} = \dfrac{1}{6}SA.SB.SC = \dfrac{1}{6}.3.6.6 = 18\).

Chọn A.

Ý kiến của bạn