Trong không gian với hệ tọa độ \(Oxyz,\) cho hai đường thẳng \({{d}_{1}}:\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-1}{-\,1}\) và \({{d}_{2}}:\left\{ \begin{align} x=2-t \\ y=3-t \\ z=-\,2 \\ \end{align} \right..\) Mặt phẳng \(\left( P \right):x+by+cz+d=0\) (với \(b,\,\,c,\,\,d\in \mathbb{R}\)) vuông góc với đường thẳng \({{d}_{1}}\) và chắn \({{d}_{1}},\,\,{{d}_{2}}\) đoạn thẳng có độ dài nhỏ nhất. Tổng \(b+c+d\) bằng
Giải chi tiết:
Vì \(\left( P \right)\bot {{d}_{1}}\) suy ra \({{\vec{n}}_{\left( P \right)}}\)//\({{\vec{u}}_{{{d}_{1}}}}\)\(\Rightarrow \)\(\frac{1}{1}=\frac{b}{2}=\frac{c}{-\,1}\Rightarrow \left\{ \begin{align} b=2 \\ c=-\,1 \\ \end{align} \right.\Rightarrow \left( P \right):x+2y-z+d=0.\)
Gọi \(A\in {{d}_{1}}\Rightarrow A\left( a+1;2a+2;1-a \right)\) và \(B\in {{d}_{2}}\Rightarrow B\left( 2-m;3-m;-\,2 \right).\)
Mà \(A,\,\,B\in mp\,\,\left( P \right)\) suy ra \(\left\{ \begin{array}{l}a + 1 + 2\left( {2a + 2} \right) - \left( {1 - a} \right) + d = 0\\2 - m + 2\left( {3 - m} \right) + 2 + d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6a + d + 4 = 0\left( 1 \right)\\ - 3m + d + 10 = 0\left( 2 \right)\end{array} \right.\)
Lấy \(\left( 1 \right)-\left( 2 \right),\) ta được \(2a+m=2\Leftrightarrow m=2-2a\)\(\Rightarrow \)\(A{{B}^{2}}={{\left( 1-m-a \right)}^{2}}+{{\left( 1-m-2a \right)}^{2}}+{{\left( a-3 \right)}^{2}}\)
\(={{\left( a-1 \right)}^{2}}+{{\left( -\,1 \right)}^{2}}+{{\left( a-3 \right)}^{2}}=2{{a}^{2}}-8a+11=2{{\left( a-2 \right)}^{2}}+3\ge 3\Rightarrow AB\ge \sqrt{3}.\)
Dấu \(''\,\,=\,\,''\) xảy ra khi và chỉ khi \(a=2,\) thay vào \(\left( 1 \right),\) ta được \(d=-\,6a-4=-\,16.\)
Vậy tổng \(T=b+c+d=2-1-16=-\,15.\)
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.