Trong không gian tọa độ Oxyz, mặt cầu tâm \(I\left( {a;b;c} \right)\) tiếp xúc với trục Oy có phương trình là
Giải chi tiết:
Ta có \(d\left( {I;Oy} \right) = \sqrt {{a^2} + {c^2}} \), suy ra mặt cầu tâm \(I(a;b;c)\)tiếp xúc với trục Oy có bán kính \(R = \sqrt {{a^2} + {c^2}} \).
Vậy phương trình mặt cầu là \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {a^2} + {c^2}\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.