Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2;3} \right)\) và đi qua điểm \(A\left( {1;1;2} \right)\) có phương trình là
Giải chi tiết:
Mặt cầu có bán kính: \(R = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {1 - 2} \right)}^2} + {{\left( {2 - 3} \right)}^2}} = \sqrt 2 \)
Vậy mặt cầu có phương trình : \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.