[LỜI GIẢI] Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C' có A' - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C' có A'

Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C' có A'

Câu hỏi

Nhận biết

Trong không gian \(Oxyz \), cho hình lăng trụ tam giác đều \(ABC.A'B'C' \) có \(A' \left( { \sqrt 3 ; - 1;1} \right) \), hai đỉnh \(B,C \) thuộc trục \(Oz \) và \(AA' = 1 \) ( \(C \) không trùng với \(O \)). Biết véc tơ \( \overrightarrow u = \left( {a;b;2} \right) \) với \(a,b \in \mathbb{R} \) là một véc tơ chỉ phương của đường thẳng \(A'C \). Tính \(T = {a^2} + {b^2} \).


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình \(BC \equiv Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\).

Mặt phẳng \(\left( {AMM'A'} \right)\) đi qua \(A'\) và vuông góc với \(BC\) nên \(\left( {AMM'A'} \right)\) đi qua \(A'\left( {\sqrt 3 ; - 1;1} \right)\) và nhận \(\overrightarrow k  = \left( {0;0;1} \right)\) làm VTPT hay \(\left( {AMM'A'} \right):0\left( {x - \sqrt 3 } \right) + 0\left( {y + 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow z = 1\).

\(M = BC \cap \left( {AMM'A'} \right) \Rightarrow t - 1 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {0;0;1} \right)\)

Mà \(AA' = 1,A'M = \sqrt {{{\left( {\sqrt 3  - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {1 - 1} \right)}^2}}  = 2\) \( \Rightarrow AM = \sqrt {A'{M^2} - A'{A^2}}  = \sqrt {{2^2} - {1^2}}  = \sqrt 3 \).

Tam giác \(ABC\) đều có độ dài đường cao \(AM = \dfrac{{BC\sqrt 3 }}{2} = \sqrt 3  \Rightarrow BC = 2\)

Gọi \(B\left( {0;0;m} \right),C\left( {0;0;n} \right)\) với \(n \ne 0\) thì \(BC = 2 \Leftrightarrow \left| {m - n} \right| = 2\) và \(M\left( {0;0;1} \right)\) là trung điểm \(BC \Leftrightarrow \dfrac{{m + n}}{2} = 1 \Leftrightarrow m + n = 2\).

Khi đó \(m = 0,n = 2\) vì \(n \ne 0\) hay \(C\left( {0;0;2} \right)\).

\( \Rightarrow \overrightarrow {A'C}  = \left( { - \sqrt 3 ;1;1} \right)\) hay \(2\overrightarrow {AC'}  = \left( { - 2\sqrt 3 ;2;2} \right)\) là một VTCP của \(A'C\).

Suy ra \(a =  - 2\sqrt 3 ,b = 2 \Rightarrow {a^2} + {b^2} = {\left( { - 2\sqrt 3 } \right)^2} + {2^2} = 16\).

Chọn B.

Ý kiến của bạn