Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2;3;4} \right),\,\,B\left( {3;0;1} \right)\). Khi đó độ dài vectơ \(\overrightarrow {AB} \) là:
Giải chi tiết:
Ta có: \(\left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {3 - 2} \right)}^2} + {{\left( {0 - 3} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {1 + 9 + 9} = \sqrt {19} \).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.