Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1;2;3} \right),\,\,B\left( {5;6;1} \right).\) Biết \(M\left( {a;b;0} \right)\) sao cho tổng \(MA + MB\) nhỏ nhất. Tính độ dài đoạn \(OM.\)
Giải chi tiết:
Dễ thấy hai điểm \(A,\,\,B\) nằm cùng phía đối với \(\left( {Oxy} \right)\), điểm \(M\left( {a;b;0} \right) \in \left( {Oxy} \right)\).
Gọi \(A'\) là điểm đối xứng với \(A\) qua \(\left( {Oxy} \right)\)\( \Rightarrow A'\left( {1;2; - 3} \right)\).
Theo tính chất đối xứng ta có: \(MA = MA'\).
Do đó \(MA + MB = MA' + MB \ge A'B\) (Bất đẳng thức tam giác).
Dấu “=” xảy ra \( \Rightarrow M \in A'B\). Hay \(M,\,\,A',\,\,B\) thẳng hàng \( \Rightarrow \overrightarrow {A'M} ;\,\,\overrightarrow {A'B} \) cùng phương.
Ta có: \(\left\{ \begin{array}{l}\overrightarrow {A'M} = \left( {a - 1;b - 2;3} \right)\\\overrightarrow {A'B} = \left( {4;4;4} \right)\end{array} \right.\)\( \Rightarrow \dfrac{{a - 1}}{4} = \dfrac{{b - 2}}{4} = \dfrac{3}{4}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 5\end{array} \right.\).
\( \Rightarrow M\left( {4;5;0} \right)\). Vậy \(OM = \sqrt {{4^2} + {5^2} + {0^2}} = \sqrt {41} \).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.