Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1;2;3} \right),\,\,B\left( {3;2;1} \right)\). Phương trình mặt cầu đường kính \(AB\) là:
Giải chi tiết:
Gọi \(I\) là trung điểm của \(AB\) ta có \(I\left( {2;2;2} \right)\).
Ta có : \(AB = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {1 - 3} \right)}^2}} = \sqrt {4 + 4} = 2\sqrt 2 \).
Do đó mặt cầu đường kính \(AB\) có tâm \(I\left( {2;2;2} \right)\) và bán kính \(R = \dfrac{{AB}}{2} = \sqrt 2 \).
Vậy phương trình mặt cầu là \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 2\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.