Trong không gian \(Oxyz\) cho điểm \(M\left( {1;2;3} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(M\) cắt các trục tọa độ \(Ox;Oy;Oz\) lần lượt tại \(A,B,C\) sao cho \(M\) là trọng tâm của tam giác \(ABC\) là
Giải chi tiết:
Theo đề bài ta có : \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) \(\left( {a;b;c \ne 0} \right)\)
Vì \(M\) là trọng tâm \(\Delta ABC\) nên \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_M} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_M} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 = \frac{a}{3}\\2 = \frac{b}{3}\\3 = \frac{c}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 6\\c = 9\end{array} \right.\)
Suy ra \(A\left( {3;0;0} \right),B\left( {0;6;0} \right),C\left( {0;0;9} \right)\)
Phương trình mặt phẳng \(\left( P \right)\) là \(\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1 \Leftrightarrow 6x + 3y + 2z - 18 = 0\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.