[LỜI GIẢI] Trong không gian Oxyz cho A( 2;0;0 )B( 0;4;0 )C( 0;0;6 )D( 2;4;6 ). Gọi ( P ) là mặt phẳng song song - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Trong không gian Oxyz cho A( 2;0;0 )B( 0;4;0 )C( 0;0;6 )D( 2;4;6 ). Gọi ( P ) là mặt phẳng song song

Trong không gian Oxyz cho A( 2;0;0 )B( 0;4;0 )C( 0;0;6 )D( 2;4;6 ). Gọi ( P ) là mặt phẳng song song

Câu hỏi

Nhận biết

Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),\,\,B\left( {0;4;0} \right),\,\,C\left( {0;0;6} \right),\,\,D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) mặt phẳng song song với \(mp\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\). Phương trình của \(\left( P \right)\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\dfrac{x}{2} + \dfrac{y}{4} + \dfrac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\)

 \(//\left( {ABC} \right) \Rightarrow \left( P \right):\) \(6x + 3y + 2z + m = 0,\,\left( {m \ne  - 12} \right)\)

\(d\left( {D;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.4 + 2.6 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {36 + m} \right|}}{7}\)

\(d\left( {\left( {ABC} \right);\left( P \right)} \right) = d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.0 + 2.0 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {12 + m} \right|}}{7}\) (do \(\left( P \right)//\left( {ABC} \right)\))

Theo đề bài, ta có:

\(\dfrac{{\left| {36 + m} \right|}}{7} = \dfrac{{\left| {12 + m} \right|}}{7} \Leftrightarrow \left| {36 + m} \right| = \left| {12 + m} \right| \Leftrightarrow \left[ \begin{array}{l}36 + m = 12 + m\,\,\left( {vo\,\,nghiem} \right)\\36 + m =  - 12 - m\end{array} \right. \Leftrightarrow m =  - 24\,\,\left( {tm} \right)\)

Vậy, \(\left( P \right):6x + 3y + 2z - 24 = 0\).

Chọn: A

Ý kiến của bạn