Trong không gian hệ trục tọa độ \(Oxyz\), cho hai điểm \(A\left( {1;2;3} \right),B\left( {5;4; - 1} \right)\). Phương trình mặt cầu đường kính \(AB\) là
Giải chi tiết:
Gọi \(I\) là trung điểm của \(AB\) thì \(I\left( {3;3;1} \right)\).
Ta có: \(AB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} = 6\).
Mặt cầu đường kính \(AB\) có tâm là trung điểm \(AB\) và bán kính \(R = \frac{{AB}}{2} = 3\) nên có phương trình:
\({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = {3^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 9\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.