Trong các mặt cầu tiếp xúc với hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = t\\y = 2 - t\\z = - 4 + 2t\end{array} \right.,\;{\Delta _2}:\left\{ \begin{array}{l}x = - 8 + 2t\\y = 6 + t\\z = 10 - t\end{array} \right.;\) phương trình mặt cầu có bán kính nhỏ nhất là
Giải chi tiết:
Nhận xét: Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng nếu nó có tâm là trung điểm của đoạn vuông góc chung. Từ đó ta tìm đoạn vuông góc chung và suy ra tâm, bán kính mặt cầu.
\({\Delta _1}\) có VTCP \(\overrightarrow {{u_1}} = \left( {1; - 1;2} \right)\) và \({\Delta _2}\) có VTCP \(\overrightarrow {{u_2}} = \left( {2;1; - 1} \right)\).
Gọi \(M\left( {t;2 - t; - 4 + 2t} \right),\,\,N\left( { - 8 + 2t';6 + t';10 - t'} \right)\) lần lượt là hai điểm thuộc \({\Delta _1},\,\,{\Delta _2}\) sao cho \(MN\) là đoạn vuông góc chung.
\( \Rightarrow \overrightarrow {MN} = \left( { - 8 + 2t' - t;4 + t' + t;14 - t' - 2t} \right)\)
\(MN\) là đoạn vuông góc chung \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_1}} = 0\\\overrightarrow {MN} .\overrightarrow {{u_2}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6t + t' = 16\\t + 6t' = 26\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\t' = 4\end{array} \right.\).
Suy ra \(M\left( {2;0;0} \right),N\left( {0;10;6} \right) \Rightarrow I\left( {1;5;3} \right)\) là trung điểm của \(MN\) và cũng là tâm mặt cầu cần tìm.
Bán kính mặt cầu \(R = IM = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {0 - 5} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = \sqrt {35} \).
Vậy phương trình mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 3} \right)^2} = 35\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.