Trong các hình hộp chữ nhật nằm trong mặt cầu bán kính R, thể tích lớn nhất có thể của khối hộp chữ nhật là
Giải chi tiết:

Giả sử độ dài các đoạn AB, AD, AA’ lần lượt là \(a,\,b,\,c\)
\( \Rightarrow \) Thể tích khối hộp chữ nhật: \(V = abc\)
Khối hộp chữ nhật có thể tích lớn nhất \( \Rightarrow \) Khối hộp chữ nhật nội tiếp mặt cầu. Khi đó: \({a^2} + {b^2} + {c^2} = AC{'^2} = {\left( {2R} \right)^2} = 4{R^2}\)
Ta có: \({a^2} + {b^2} + {c^2} \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} \Rightarrow abc \le \sqrt {{{\left( {\frac{{{a^2} + {b^2} + {c^2}}}{3}} \right)}^3}} = \sqrt {{{\left( {\frac{{4{R^2}}}{3}} \right)}^3}} = \frac{{8{R^3}}}{{3\sqrt 3 }} = \frac{{8\sqrt 3 {R^3}}}{9} \Rightarrow V \le \frac{{8\sqrt 3 {R^3}}}{9}\)
Thể tích lớn nhất có thể của khối hộp chữ nhật là \(\frac{{8{R^3}\sqrt 3 }}{9}\), đạt được khi và chỉ khi \(a = b = c = \frac{{2R}}{{\sqrt 3 }}\).
Chọn: B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.