Trên tập số phức, cho phương trình \(a{{z}^{2}}+bz+c=0\,\,\left( a,b,c\in \mathbb{R}; \, \, a \neq 0 \right).\) Chọn kết luận sai:
Giải chi tiết:
Lời giải chi tiết.
Với \(a\ne 0\) ta có phương trình \(a{{z}^{2}}+bz+c=0\) (*) là phương trình bậc hai ẩn z có \(\Delta ={{b}^{2}}-4ac.\)
Xét trong tập số phức thì phương trình (*) luôn có nghiệm \(\Rightarrow \) D đúng.
Áp dụng hệ thức Vi-et ta có: \({{z}_{1}}+{{z}_{2}}=-\frac{b}{a}.\)
\(\Rightarrow \) Khi \(b=0\) ta có: \({{z}_{1}}+{{z}_{2}}=0\Rightarrow \) A đúng.
+) Xét \(\Delta <0\) ta có phương trình (*) có hai nghiệm phức phân biệt: \(\left[ \begin{align} & {{z}_{1}}=\frac{-b+i\sqrt{\left| \Delta \right|}}{2a} \\ & {{z}_{2}}=\frac{-b-i\sqrt{\left| \Delta \right|}}{2a} \\ \end{align} \right.\)
\(\Rightarrow \left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|\Rightarrow \) B đúng.
+) Xét \(\Delta >0\Rightarrow \) phương trình (*) có hai nghiệm thực phân biệt: \(\left[ \begin{align} & {{z}_{1}}=\frac{-b+\sqrt{\Delta }}{2a} \\ & {{z}_{2}}=\frac{-b-\sqrt{\Delta }}{2a} \\ \end{align} \right.\Rightarrow \) C sai.
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.