Tổng tất cả các nghiệm của phương trình \({3^{2x}} - {2.3^{x + 2}} + 27 = 0 \) bằng:
Giải chi tiết:
\(\begin{array}{l}\;\;\;\;{3^{2x}} - {2.3^{x + 2}} + 27 = 0 \Leftrightarrow {3^{2x}} - {2.9.3^x} + 27 = 0\\ \Leftrightarrow {3^{2x}} - {18.3^x} + 27 = 0 \Leftrightarrow \left[ \begin{array}{l}{3^{{x_1}}} = 9 + 3\sqrt 6 \\{3^{{x_2}}} = 9 - 3\sqrt 6 \end{array} \right.\\ \Rightarrow {3^{{x_1}}}{.3^{{x_2}}} = \left( {9 + 3\sqrt 6 } \right)\left( {9 - 3\sqrt 6 } \right)\\ \Leftrightarrow {3^{{x_1} + {x_2}}} = {9^2} - {\left( {3\sqrt 6 } \right)^2} = 27\\ \Leftrightarrow {x_1} + {x_2} = 3.\end{array}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.